Parallax Robotics Scope & Sequence Scribbler 3 Robot | Parallax Inc. | Unit 1 | Unit 2 | Unit 3 | Unit 4 | Unit 5 | Unit 6 | Unit 7 | Unit 8 | Unit 9 | Unit 10 | Unit 11 | Unit 12 | Unit 13 | Unit 14 | Unit 15 | Unit 16 | Unit 17 | |---------------------------------------|---|---|--|---|--|---|--|--|---|--|--|---|---|--|---|---|--| | | Getting Started with
BlocklyProp for the S3 | | | Motion: Driving
Basics | Motion: Speed
Blocks | Motion: Driving
Distances | Motion: Turns and Arcs | Motion: Draw
Simple Shapes | Motion: Turning
Shapes into Art | Sensors: Avoid
Obstacles with
Infrared | Sensors: Following
Visible Light | Sensors: Line
Following | Hacker Port
Project: External
LED | Hacker Port
Project: Standard
Servo | Hacker Port
Project:
Standard Servo
Pen Lifter | | Hacker Port
Project: IR
Remote Control | | Scribbler S3 12-pack
Plus | | | | | | All Par | rallax hardware need | ed for this unit is inc | cluded in the Scribble | r S3 Robot 12-pack | k Plus Kit | | | | | | | | Single Scribbler S3
Robot | All the Parallax hardware needed for this unit is included with one Scribbler S3 Robot. | | | | | | | | | | | | 3 pin FF cable
(#800-00080) | Parallax
Standard Servo
(#900-00005) | Parallax
Standard Servo
(#900-00005) | PING)))Sensor
(#281015) &
other items | IR Remote
(#020-00001) &
other items | | Other items needed | none | none | none | none | none | none | Flat surface with
serpentine path
drawn on it. | Sharpie pens,
paper or poster
board | Sharpie pens,
paper or poster
board, protractor
(optional) | Light to medium colored obstacles | Flashlight or small
bright lamp.
Incandescent works
better than LED. | Black electrical
tape and
posterboard, or
printable tracks and
clear tape, paper
for line sensitivity
chart | (#150-02210), 10
k-ohm resistor | Jumper wire or twist tie | foam tape, clear
tape, marker,
scissors, | 3 pin FF
extension cable
(#800-00080),
marker cap or
clothespin, tape | Infrared
reciever (#350-
00039), 200mm
FF jumper wires
(#800-00062),
poster putty or
double sided
foam tape | | Approximate time | 60 minutes | 30 minutes | 60 minutes | 30 minutes | 60 120 minutes | | 3 | prepare ahead: install
BlocklyProp client
software on
computers; set up up
and confirms | vocabulary words as
they relate to
robotics and
programming. | Shorten: Skip the "More Sounds for the S3 module. Extension: Use what you know about the blocks in the sound category to communicate multiple types of specific messages in one program. | provides a visual
model of the
differences between
the Drive and
Rotate blocks. | template of the | | | programs to draw | modifications
impact a program's
outcomes, create a
list of inputs and | with other | Extension: Can you find the darkest location in a room? How is sensing darkness the same and different than brightness? | Shorten: Prepare
the Line Sensor
Reflectivity table
ahead of time.
Print and connect
the track pieces. | Shorten: Focus on hacking with the bumper only. Extension: Design your robot and write a program to roam the room, giving you specific feedback that tells you where the obstacle is in relation to the S3. | the servos with
the wire ahead of
time and connect
the servos to the
S3. | the servos to
the S3 and
prepare the pen | the PING)))
Ultrasonic
Distance | Shorten: Configure the remote ahead of time. Extension: Design and program the S3 for a functional use of the remote control capabilities of the S3. | | objectives (students will be able to) | Connect the S3 Robot | on the S3. Apply
your knowledge of
the Wait block,
Change LED block
and Loop block to
create a program | Know how to design
a program to play a
tone. Create
variables and use the
Number Value block. | commands, design
programs to move
and stop the S3 in | commands to
move the S3 in
precise and
predictable ways
by understanding
the Drive Speed
block and distance
formula. Know the
difference between | | what blocks are
better for which
types of turns.
Create programs
to move the S3
through a variety
of turn types. | Use motor and control blocks to create efficient programs to draw simple shapes. | Through the use of cloning, create predictable variations to program outcomes using different motor and control blocks. | light sensor and
blocks to create
a program that
provides
feedback about | phototransistor and
blocks to create a
program that
responds to its
environment with the
use of the Drive | Determine the upper and lower threshold for the line sensor. Use the line sensing capabilities of the S3 to create a program that provides feedback about its environment. Use the line sensing capabilities of the S3 to create a program that follows a line. | | program to hold | Program the S3 to make specified drawings. | Using the
Hacker Port,
design a
program to
measure
distance with
the PING)!)
Ultrasonic
Distance
Sensor. | Configure your remote to work with the S3. Use the remote to operate the S3 LEDs. Create a program to drive the S3 with the remote. | | Resource link | BlocklyProp Online
Programming Tool | Lights and Sounds:
Lights On, Lights Off | | Simple Motion with
Motor Blocks:
Driving Basics:
Drive and Rotate | Motor Blocks:
Driving There and
Back Again: Using | Simple Motion with
Motor Blocks: Going
the Distance: Using
the Drive Distance
Block | Simple Motion
with Motor Blocks:
Turns and Arcs | Simple Motion
with Motor Blocks:
Draw Simple
Shapes | Simple Motion with
Motor Blocks:
Turning Shapes
into Art | Navigating with
Sensors:
Avoiding
Obstables with
Infrared | Navigating with Sensors: Following Visible Light | Navigating with
Sensors: Line
Following | Hacker Port
Expansion: What's
a Hacker Port? | Hacker Port Expansion: Controlling a Standard Servo | Hacker Port Expansion: Standard Servo Pen Lifter | Hacker Port
Expansion:
Sense Distance
with a PING))) | IR Remote control with the S3 | | Resource link | Getting Started with BlocklyProp for the S3 tutorial | | Scribbler S3 GUI | | | | | | | | YouTube video -
Light and Line
Following | YouTube video -
Light and Line
Following | | | Pen Lifter
Template | | 3 Function
Universal
Remote | | Resource link | Scribbler 3 Robot
Block Reference | | | | | | | | | | | Scribbler Printable Line Following Tracks | | | YouTube video - Parallax S3 Scribbles 'S3' | | | | Resource link | BlocklyProp
Programming
Environment | | | | | | | | | | | | | | YouTube video - Standard Servo Pen Lifter | | | 6/7/2018